A coordinated model of bus bridging and passenger flow management and control in response to urban metro failure

Abstract

Shuttle buses are generally sent to evacuate stranded passengers during urban metro disruptions. However, when a large number of passengers are transported to the turnaround stations by shuttle buses, it is likely to cause the passengers to wait for the turnaround station. In order to reduce the passenger delay in the whole process of bus bridging and train re-boarding, this paper proposed a coordinated model of bus bridging and passenger flow management and control in response to urban metro failures. The emergency management plan with the minimum passenger delay was obtained by solving the model, and the sensitivity analysis of relevant factors affecting the performance of the model was performed. Taking Shenzhen Metro Line 3 as an example to compare the performance of the traditional model and the coordinated model. The experimental results show that the coordinated model has better performance in reducing passenger delay than the traditional model and the collaborative management scheme can effectively reduce passenger delay; when all passengers can be evacuated, increasing the number of buses has little effect on reducing passenger delay; The time when urban metro starts to operate in a short turning mode and the train departure interval play an important role in reducing passenger delay.

Publication
Journal of Railway Science and Engineering, vol. 18 pp. 1604-1612, June 2021.